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Abstract —Most models used for the analysis of lossy, multi-
conductor, multidielectric transmission line systems are non-
causal and fail to predict accurately the signal distortion on
practical printed circuits. This paper reviews the method of
analysis and assumptions made in these models and presents
more accurate models. Finally, to illustrate the theory, numeri-
cal examples are presented.

1. INTRODUCTION

T has been shown [1] that the TEM mode can exist in a

lossy medium provided that the conductors are perfect
and the medium is homogeneous. The quasi-TEM ap-
proximation, however, remains the dominant trend in the
electronics industry for analyzing lossy multiconductor,
multidielectric transmission line systems (MCMDTLS’s).
The reasons arc that the quasi-TEM approximation re-
mains valid for most practical transmission line structures
and offers relative ease and low cost compared with a
full-wave approach in obtaining the time-domain re-
sponse of a MCMDTLS to arbitrary excitations. The
equivalence between the TEM mode field equations and
the transmission line equations allows the description of
propagation in terms of the line circuit parameters or the
medium characteristics, that is, its admittivity and impe-
divity [1]. Both approaches are used in this paper and
interchanged whenever convenient. The frequency depen-
dence of the circuit parameters can be directly derived
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from the frequency dependence of the medium character-
istics. Tt will be shown that this dependence must be very
accurately determined in order to analyze practical printed
circuits. The usual way to compute the frequency-depen-
dent circuit parameters of a MCMDTLS is to perform a
2-D analysis of the cross section of the circuit board
[2]-[7]. Such analyses generally yield frequency-indepen-
dent inductance and electrostatic coefficient matrices [ L]
and [C], a conductance matrix [G] that varies linearly
with the frequency and is associated with the dielectric
loss, and a skin effect limited resistance matrix that varies
with the square root of frequency and is associated with
the conductor losses. In the next two sections we show
that such models lead to large errors in the prediction of
the electrical performance of MCMDTLS’s. In Section II
of this paper we solve for the time-domain response of a
single, lossy, perfectly matched conductor above a ground
plane and immersed in a perfect dielectric. We assume
TEM propagation and study the effect of the dependence
of [R] and [L] on the frequency. In Section III we solve
for the same line except that we assume that the line is
perfect while the dielectric is lossy. The TEM mode
propagates in such lines and no errors result from this
assumption. In Section IV, a brief generalization to
MCMDTLS’s is described and finally the conclusion is
presented in Section V.

II. MopELING THE CONDUCTOR LOSSES

Theoretically speaking, the TEM propagation cannot
exist on lossy conductors [1]; a component of the electric
field is needed in the direction of propagation to support
the current. For most practical purposes, however, the
frequency-dependent losses are small and the TEM prop-
agation is assumed to be valid. In this section we solve for
the time-domain response of a single perfectly matched,
lossy line above a ground plane and immersed in a homo-
geneous perfect dielectric. It is assumed that the resis-
tance of the line is skin effect limited and that it varies
with the square root of frequency [8]. It is thus given by
R= Ry, where R, is determined by the geometrical
and electrical data of the line, and w is given in radians
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per second. The transfer function of the line is thus given
by

H(w) =e—]w\/LC(1—]R0/L‘/J)l. (1)

For R, small and particularly at high frequencies, the
square root in (1) can be expanded and only the first two
terms kept. The transfer function of the line can then be
written as

H(w) zeAjw\/Ifle—Ro/Z‘/wC/Ll' (2)

The transfer function of the transmission line must satisfy
the following constraints:

H(-w)=H*(w) (3)

h(t)=0 (4)

Equation (3) ensures that the impulse response of the
system is real while (4) ensures that it is causal. It can be
shown that (1) and (2) do not satisfy (3) or (4). The reason
is to be found in the modeling of the inductance of the

line. The internal inductance is inversely proportional to
the square root of w and is very small at high frequencies.

for t <0.

If the frequency-dependent internal inductance of the’

line is included in the total inductance [9], then (3)
reduces to

H(w)= e—;w‘/L_c(HRO/ZL‘/J)le—RO/z,/Cw/u (5)

Equation (5) satisfies both conditions (3) and (4). It differs
from (2) by a nonlinear phase term. This term, resulting
from the small variation of the line total inductance with
the frequency, is very small and is negligible compared
with the linear part of the phase (R, / 2LV versus 1); it
is often neglected, particularly at high frequencies. This
nonlinear phase term does not appreciably affect the time
delay at the far end of the line. It is, however, the only
phase term that contributes to the pulse degradation and
thus significantly affects the pulse distortion at the far
end of the line, particularly for very short rise times. This
phase term must therefore be included. To illustrate this
phenomenon, we solve for a single perfectly matched,
lossy line above a ground plane and immersed in a perfect
homogeneous dielectric. The geometrical and electrical
data of the line are presented in Fig. 1, and the circuit
configuration is shown in Fig. 2. The line frequency-
dependent parameters are computed using a 2-D analysis
of the system cross section [2]. These parameters are
given by

L=053pH C=021nF R,=06 R=Ryow.

(6)

The time-domain response of the line to an arbitrary
excitation function can be computed either by inverse
Fourier transforming the product of the transfer function
with the Fourier transform of the excitation function or,
equivalently, by convolving the impulse response of the
line with the excitation function. The first method, how-
ever, requires less computational effort and is used
throughout this paper. Fig. 3 shows the impulse response
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W1 = 15 mils, W2 = 250 mils, h = 25 mils,

&) =10.0, 6= 5.67e+07 mhos/m
Fig. 1. The geometrical and electrical data of a single transmission hne
above ground plane and immersed in a homogeneous dielectric medium.

The conductor’s conductivity is a real constant ¢ and the dielectric
permittivity e(w) is a complex function of frequency.

20 L

e(t) Z0

Z0 = 50 ohms, L=50 cms

Fig. 2. The circuit configuration of the line in Fig. 1. The line is
excited with an excitation e(r) at the generator end and terminated by
its characteristic impedance at both the generator and load ends.
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£=100, ¢'=00, R =06,R =252, R =67
i ) 0

Fig. 3. The noncausal impulse response at the load end of the line in
Figs. 1 and 2 when a delta excitation is applied at the generator end.
The impulse response is shown for different values of the resistive loss
Ryi. Ry, and Ry;.
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Fig. 4. The noncausal time-domain response of the line in Figs. 1 and
2 when a step of 50 ps rise time is applied at the generator end for
different values of the resistive loss Ry, Ry, and Rg;. The output is
expressed as a percentage of the input step.

of the line, computed using the noncausal transfer func-
tion of (2), at the load end when the generator end is
excited with a delta excitation. The impulse response is
real and noncausal. Fig. 4 shows the corresponding time-
domain response to a step excitation of 50 ps rise time for
different values of the resistive loss R,. The output is
plotted as a percentage of the excitation waveform. It is
clear that the system is noncausal, and the velocity of
propagation appears to be higher for lossier lines, a
clearly nonphysical phenomenon. Fig. 5 shows the im-
pulse response of the line using (5) this time. The impulse
response is ccusal and is always zero prior to 5.27 ns,
which is the tiine delay of the line if it was lossless. Finally
Fig. 6 shows the corresponding pulse response of the line.
It is clear that no voltage appears at the output prior to
5.27 ns, and the time delay increases slightly with an
increase in the line loss. In Figs. 3, 4, 5, and 6, R, was
artificially incieased in order to show the effects of the
losses on the impulse and pulse responses of the line.
Table I, however, shows the output rise time and time
delay for the actual line (R, = 0.6) for different values of
the input rise time. All rise times are given as (10-90) rise
times while the time delay is defined as the time when the
signal reaches 10% of its value. It can be seen from this
table that the =rror in the rise time degradation resulting
from the use o the noncausal model of (2) is very large. It
is small only when the input rise time is high enough so
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Fig. 5. The causal impulse response at the load end of the line in Figs.
1 and 2 when a delta excitation is applied at the generator end. The
impulse response is shown for different values of the resistive loss Ry,
Ry,, and Ry,
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Fig. 6. The causal time-domain response of the line in Figs. 1 and 2
when a step of 50 ps rise time is applied at the generator end for
different values of the resistive loss Ry, Ry, and Rp;. The output is
expressed as a percentage of the input step.
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TABLE 1
DirrERENCE BETWEEN NONCAUSAL AND CAUSAL MODELS OF LINE RESISTIVE LOSSES
IN PREDICTING THE LINE DELAY AND RISE TIME DEGRADATION AT THE LoAD EnD

Input Rise Time  RT, Ton RT, Toc Errorin RT Errorin T
0ps 40ps 5.26 ns 90ps 5.275ns 89.5% 1.67%
45 ps 55ps 5275ns 105ps 5.285ns 47.6% 0.2%
90 ps 95 ps 5275ns 130ps 5.29ns 26.92% 0.28%
225 ps 225ps 529ns 225ps 5.31ns 0% 0.37%

RT,,: rise time for the noncausal model.

T,,: time delay using the noncausal model.

RT,: rise time using the causal model.
T,.: time delay using the causal model.
Error in RT =(RT, ~ RT,)/RT.,.
Error in Ty = (T, — T,/ T,

that, for all practical purposes, the line can be considered
lossless.

III. MobpEeLING THE DIELECTRIC LOSSES

It has been shown that the TEM propagation can exist
in a lossy homogeneous medium provided that the con-
ductors are perfect [1]. The transverse electromagnetic

fields have the form (K(x, y)e 7« Vi@)©)) where K(x, y)
is independent of frequency. The transfer function of the
line can be expressed in terms of the line circuit parame-
ters or, equivalently, in terms of the medium characteris-
tics [1]. For the purpose of this section it is conveniently

written as
H(w) = g Joym@e(@)! (7)

In this section it is assumed that the conductors are made
of nonmagnetic matter and thus are characterized by the
free-space magnetic permeability, u(w)= p,. From (7) it
follows that
pha’ (H(w)) —log?|H(w)|
e(w)= 2
Mo
log| H(w)|pha( H(w))
—2j 3 (3)
Ko

where pha(H(w)) denotes the phase of the transfer func-
tion, and |H(w)| its magnitude. From the above expres-
sion, it is obvious that the real and imaginary parts of
e(w) are related. If the real part, ¢'(w), is a constant
independent of frequency, then for the system to be
causal, it follows that the imaginary part, €"(w), must be
zero or have a (1/w) dependence. The modeling of the
dielectric constant by (¢’ — je") is therefore not valid. The
real and imaginary parts of e(w) are also related by
the causality relations of Kramers and Kronig [10], [11].

The assumption e(w)=€'— je" leads to
H(w)= e IKlg=k (9)
where
. e +Ve?' + e
m
k/l — we” 0 . (10)
2(6'+ €+ 2" )

The transfer function thus has a real term and a linear
phase term. The linear phase introduces a time shift while
the real part characterizes the losses and distorts the
propagating signal. The real part, however, describes a
noncausal system. The velocity of propagation can be
calculated from (10) as

V2

D=
'\//.LO(E"i' €X'+ e )

(11)

The velocity of propagation does not change significantly
with €”. For €"=0.25¢' the time delay changes only by
approximately 0.76% compared with the lossless line case
("= 0). The rise time, however, as with the lossy conduc-
tor, perfect dielectric case, changes drastically with both
€' and €". To illustrate this fact, we rewrite e(w) as

e(w) =€+ (0)—jle"+ Ae"(w)] =€ (w) — je'(w)
(12)

where €' and €” are real constants and §e'(w) and S¢”"(w)
are real functions of frequency. It is assumed that at all
frequencies de'(w), €"(w), and Ae”(w) are all < €', It is
not assumed, however, that Ae"(w) < €”. The rationale for
this is that while the first assumption holds for most
practical materials in the frequency range of interests,
Ae"(w) may be of the order of magnitude of €” owing to
resonances in €"(w). Expanding the square root and keep-
ing only the first two terms, the transfer function of the
medium can be written as

H( 0)) ~ e—]a)‘/p,oe’le~jw‘/17636'(w)/2\/§le—w‘/;,ro[e"+ Ae"(a))]/\/f_,l‘
| (13)

The first term in the above transfer function represents a
linear phase term; thus it introduces only a time shift and
does not distort the pulse. The second term contributes
only slightly to the velocity of propagation since it is
negligible compared with the first term. It contributes,
however, significantly to the pulse distortion since it is the
only phase term that affects the distortion and since
de'(w) may well be of the order of magnitude of
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Fig. 7. The noncausal impulse response at the load end of the line in
Figs. 1 and 2 when a delta excitation is applied at the generator end.
The impulse response is shown for different values of the dielectric
dissipation factor €, €3, and €.

[e”+ Ae"(w)]. The variation of the real part of the dielec-
tric constant with frequency, though small, must thus be
included in the modeling of lossy media since its effect
may well be of the order of magnitude of the effect of
€"(w). In terms of transmission line parameters, the varia-
tion of €'(w) with the frequency introduces a capacitance
that varies with frequency. This variation is of the same
order as that of €'(w) while the variation of conductance
with frequency is one degree higher than that of €"(w) [1].
To illustrate, we solve for the same line of Fig. 1 except
that the conductors are assumed perfect (¢ =) while the
lossy dielectric is characterized by a complex dielectric
permittivity of the form e =¢'— je". Fig. 7 shows the
impulse response of the line for various values of €” while
Fig. 8 shows the corresponding time-domain response for
a step input of 50 ps rise time. The time delay is approxi-
mately the same as that for the lossless line. In order to
find the error in the rise time, however, the frequency-
dependent dielectric permittivity must be accurately de-
termined. This can be done only by measurements. Since
no signal should appear at the far end prior to T, = 5.275
ns, the voltage prior to T, is due only to the error
resulting from the noncausality of the medium. Thus by
comparing Figs. 4 and 8 (for ¢ < T,) we can conclude that
the error in Fig. 8 is of the order of magnitude of the
error in Fig. 4 and thus that the error is large. To further
illustrate the sensitivity of the signal distortion to small
variations in e(w) or, equivalently, u(w), we compute the
pulse response of the homogeneous and lossless medium
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Fig. 8. The noncausal time-domain response of the line in Figs. 1 and
2 when a step of 50 ps rise time is applied at the generator end for
different values of the dielectric dissipation factor €, €3, and €3. The
output is expressed as a percentage of the input step.
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Fig. 9. The time-domain response of the line in Figs. | and 2 when a
step of 50 ps rise time is applied at the generator end for different
values of the real part of the dielectric constant e'(w)=10.0 and
e'(0)=10.0+ n(w), where n(w) is a uniformly distributed random vari-
able between —0.25 and 0.25.
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Fig. 10. The geometrical and electrical data of a multidielectric five-
signal conductor line.
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Fig. 11. The circuit configuration of the line in Fig./lO. The line is

excited with an excitation e(z) at the generator end of the first line and
terminated by its characteristic impedance everywhere else.
i

given by (7) to a step of 50 ps rise time. In this example /
is 50 cm and e(w) is given by

e(w)=€+n(w)

(14)

where n(w) is a uniformly distributed random variable
between —0.025¢’ and 0.025¢'. It can be seen from Fig. 9
that a 5% variation in €’ causes a large error in the pulse
response of the medium. The (10-90) output rise is 40 ps
for the lossless case when n(w) =0, whereas it is 150 ps
when n(w) is introduced. A small measurement error in
e(w) thus causes large errors in predicting the electrical
performance of MCMDTLS’s. Most measurement tech-
niques in the literature, however, have such errors. Equa-
tion (13) provides a good way to measure €', de'(w), and
Ae’"(w) separately. Work is being done along these lines
and will be reported soon.

IV. TREATMENT OF MULTICONDUCTOR,
MULTIDIELECTRIC TRANSMISSION LINES

In an MCMDTLS, for an N-signal conductor line and
one return line, there are’ N distinct modes that propa-
gate on the line [12]-[14]. Each mode is decoupled from
all other modes and has a different propagation constant.
Figs. 12 and 13 show typical voltage waveform at the
generator and load ends of the excited line of a typical
five-conductor line. The line geometrical and electrical
data are shown in Fig. 10 while the circuit configuration is
shown in Fig. 11. For the purpose of this section, the line
is treated as lossless. The voltage in this case is the sum of
five independent modes. The propagation constants of
the modes are determined from an cigenvalue analysis
involving the line circuit parameters [12]. Each mode has
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Fig. 12. The various modes excited at the generator end (1G) of the
line presented in Figs. 10 and 11 when the line is excited with a step
excitation of zero and 50 ps rise times at (1G). The ripples in the
response to the zero rise time step are due to the FTT Gibbs phe-
nomenon. The output is expressed as a percentage of the input signal.
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Fig. 13. The various modes excited at the load end (1L) of the line
presented in Figs. 10 and 11 when the line is excited with a step
excitation of zero and 50 ps rise times at (1G). The ripples in the
response to the zero rise time step are due to the FTT Gibbs phe-
nomenon. The output is expressed as a percentage of the input signal.
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the same mathematical form as the single-line TEM mode
and suffers the same kind of errors in the mode distor-

tion, resulting in large errors in the crosstalk and rise time .

degradation. The reason, as in the single-line case, is in
the modeling of the frequency-dependent inductance ma-
trix and the frequency-dependent dielectric constant. The
inductance matrix can be corrected as in the single-line
case, while the variation of the dielectric constant results
in capacitance and conductance matrices that vary with
frequency which can be computed at each frequency in
the same manner as described in [2]. Work is being done
along these lines and will be promptly reported.

V. CoNcLUSION

The traditional way of analyzing multiconductor, multi-
dielectric transmission line networks leads to paradoxes.
The models are noncausal and produce large errors in
predicting the signal distortion at the excited lines and
crosstalk at the quiet lines of the MCMDTLS. The reason
is that a small nonlinear phase term is neglected in the
transfer function of the MCMDTLS. A more accurate
model, causal to within engineering accuracy, has been
presented for the conductor losses and compared with the
old ones and a newly developed model for the frequency-
dependent dielectric constant has been presented. Exper-
imental work is required, however, to check the accuracy
of the new dielectric model.
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